Umsetzung des Konzept zur Minderung der diffusen Nährstoffeinträge

Landesforschungsanstalt für Landwirtschaft und Fischerei

Maßnahme 21: Optimierung des Einsatzes von flüssigen organischen Düngemitteln

David Buglowski, LFA

Es gilt das gesprochene Wor

04.11.2019

Kann die Düngewirkung von Gärresten noch gesteigert werden?

- 1. Ammoniak-Verluste
- 2. N-Saldo und Ertrag
- 3. Düngewirkung und Einsatz

Kann die Düngewirkung von Gärresten noch gesteigert werden?

Faktoren die N-Verluste beeinflussen:

- Wasserhaltefähigkeit der Böden
- Niederschlags- Sickerwassermenge
- Ausbringungsbedingungen
- Bodenbearbeitung
- Angebaute Kultur
- Vorrat an mineralischen Stickstoff im Boden

Ansäuerung der Gärreste

Ammonium-Ammoniak-Gleichgewicht + OH- ⇔ NH₃ + H2O 100 Anteil N als NH₃ 75 NH₄+ (Ammonium) 50 NH_3 (Ammoniak) 0 5 10 11 12 pН

Quelle: nach BioCover A/S

Strip Till mit Depotdüngung

(1) F Min.

(2) F GR

(3) F GR+

(4) F GR+

(5) H Min.

(6) H GR+

GR+

(7) H, F

 $(-10m^3)$

Winterraps

 $0m^3$

30m³

20m³

 $0m^3$

15m³

10 +

25 m³

210

210

reduziert

210

(H: 30)

210

196

196

reduziert

196

(H: 0)

196

(GPS)

 $0m^3$

25m³

15m³

 $0m^3$

 $0m^3$

6

Silomais

 $0m^3$

40m³

30m³

 $0m^3$

15m³

10 +

30m³

200

200

reduziert

200

(H:30)

200

N-Bedarfswe	rt [kg/ha]	und Aus	gebrachte	Menge	e GR [m³/ha]	nach	Kulturart und	
Düngungsva									
									ı

							Wintertrities
Düngungsva	riante						
N-Bedartswe	ert [kg/na]	und Aus	gebrachte	Menge	GR [m³/na	aj nach	Kulturart und

 $0m^3$

25m³

15m³

 $0m^3$

 $0m^3$

								\M/intorti	ritica
Düngungsvai	riante								
N-Bedarfswe	rt [kg/ha]	und Aus	gebrachte	Menge	GR [m³/ha]	nach	Kulturart	und

								Wint	ertrit	ica
Düngungsva	riante									
N-Bedartswe	rt [kg/ha]	und Aus	gebrachte	Menge	GR	[m³/na]	nach	Kultur	art u	na

Winterweizen

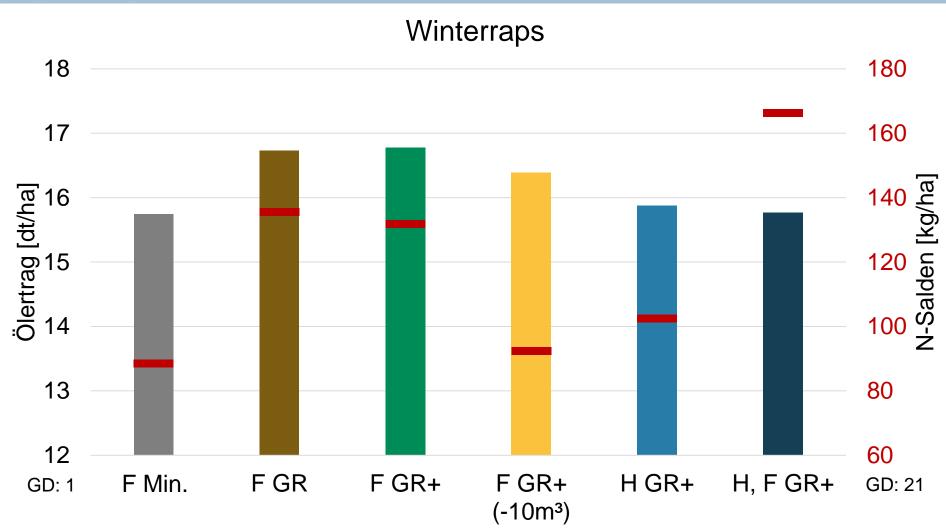
230

230

reduziert

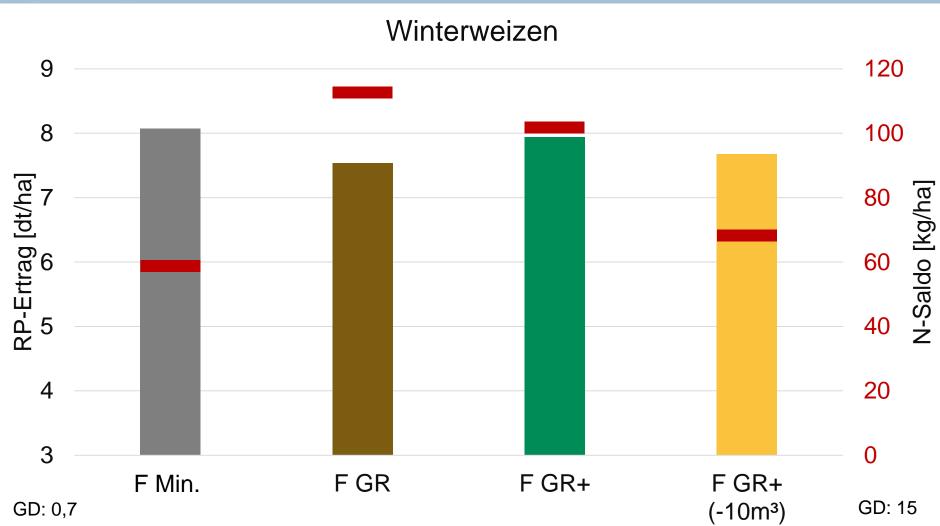
230

(H: 0)

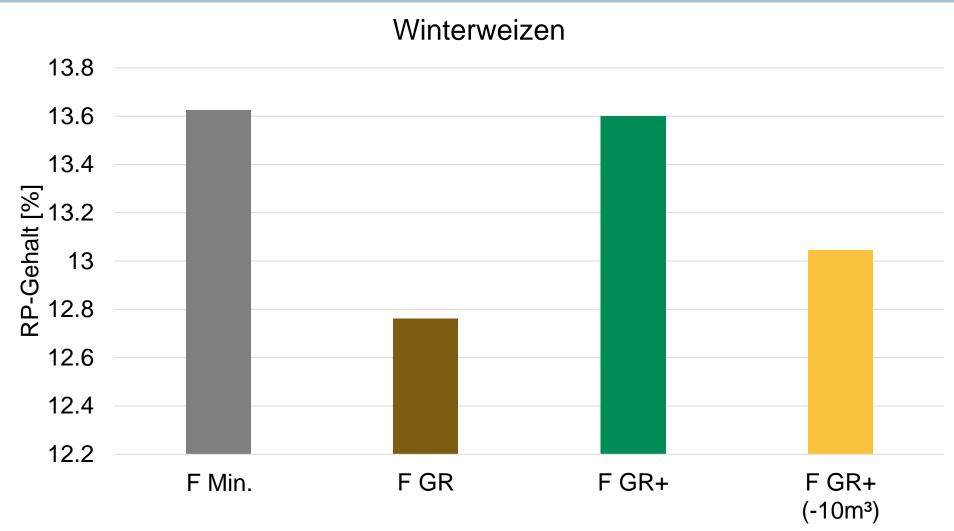

230

					10.71	
Düngungsva	riante					
N-Bedarfswe	ert [kg/ha]	und Ausge	ebrachte Meng	je GR [m³/ha] nach Kultui	rart und

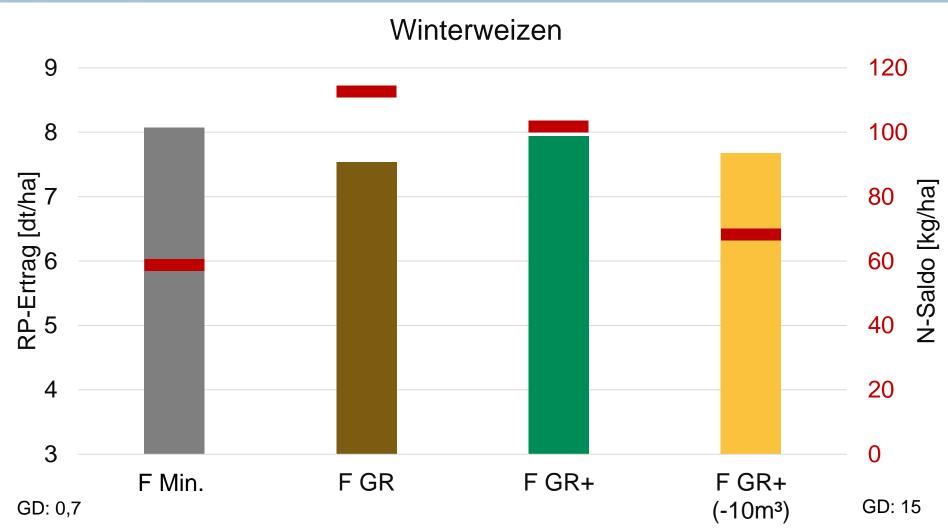
					V	Vintertritica
Düngungsvar	riante					
N-Bedarfswer	rt [kg/ha] un	d Ausgebracl	nte Menge	GR [m³/ha]	nach Ku	Iturart und


Landesforschungsanstalt für Landwirtschaft und Fischerei

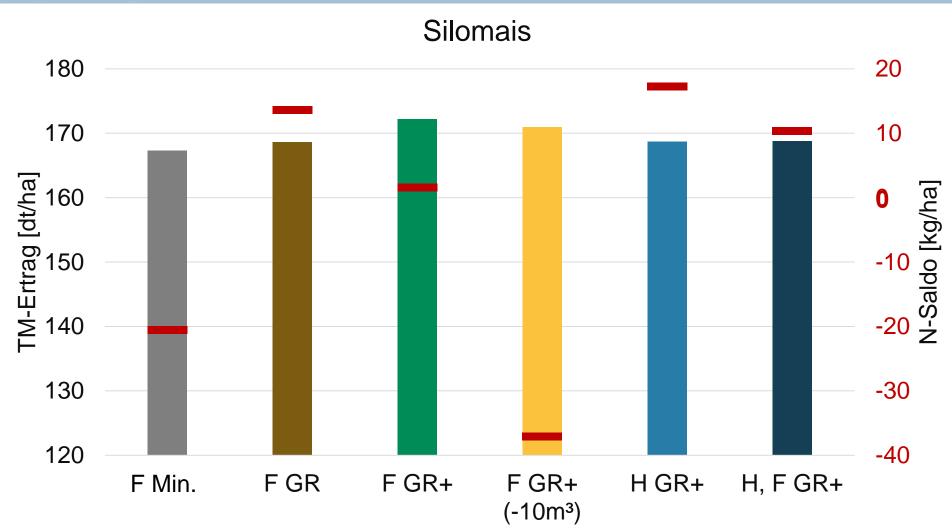
Ölerträge und N-Salden diverser Düngungsvarianten; Gülzow 2016 – 2018; F: Frühjahr; H: Herbst; "+": emissionsmindernd ausgebracht


Landesforschungsanstalt für Landwirtschaft und Fischerei

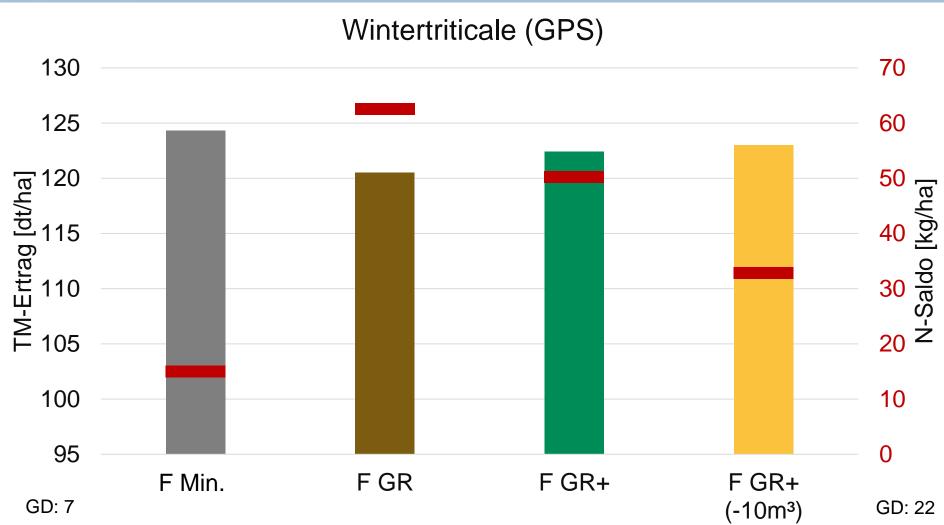
RP-Erträge und N-Salden diverser Düngungsvarianten; Gülzow 2016 – 2019; F: Frühjahr; "+": emissionsmindernd ausgebracht


Landesforschungsanstalt für Landwirtschaft und Fischerei

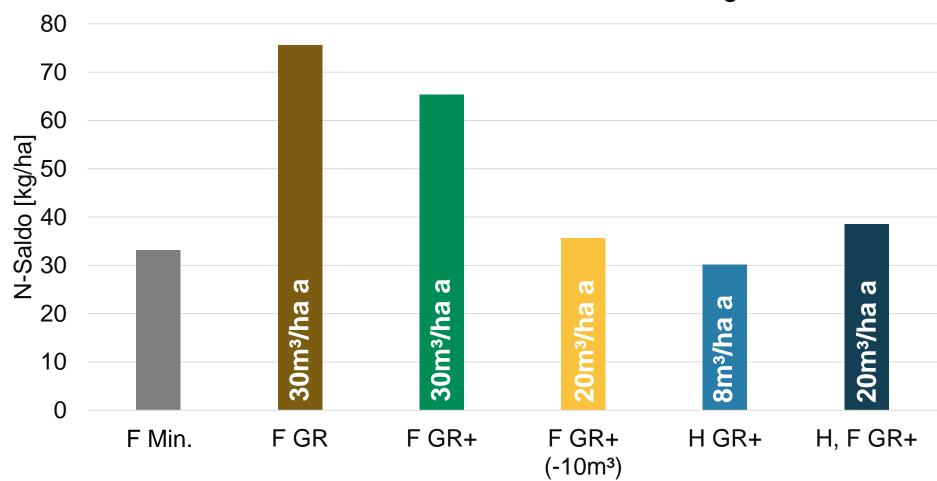
RP-Gehalt diverser Düngungsvarianten; Gülzow 2016 – 2019; F: Frühjahr; "+": emissionsmindernd ausgebracht


Landesforschungsanstalt für Landwirtschaft und Fischerei

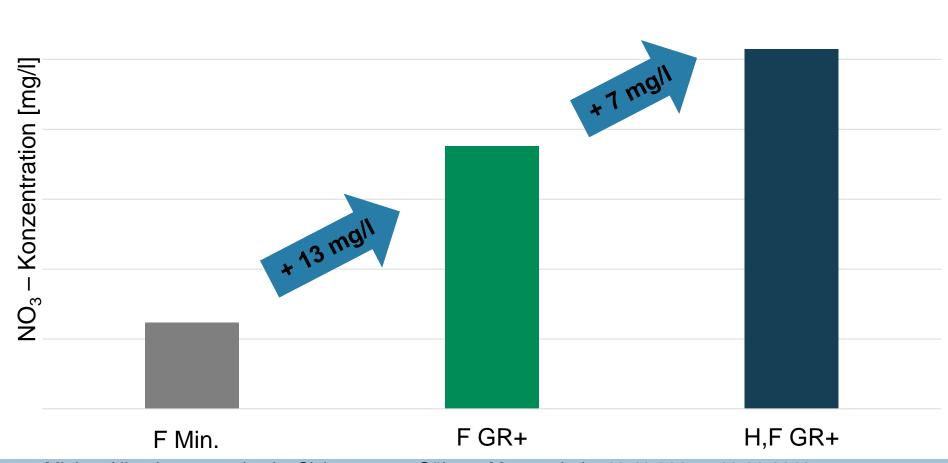
RP-Erträge und N-Salden diverser Düngungsvarianten; Gülzow 2016 – 2019; F: Frühjahr; "+": emissionsmindernd ausgebracht


Landesforschungsanstalt für Landwirtschaft und Fischerei

TM-Erträge und N-Salden diverser Düngungsvarianten; Gülzow 2017 – 2018; F: Frühjahr; H: Herbst; "+": emissionsmindernd ausgebracht

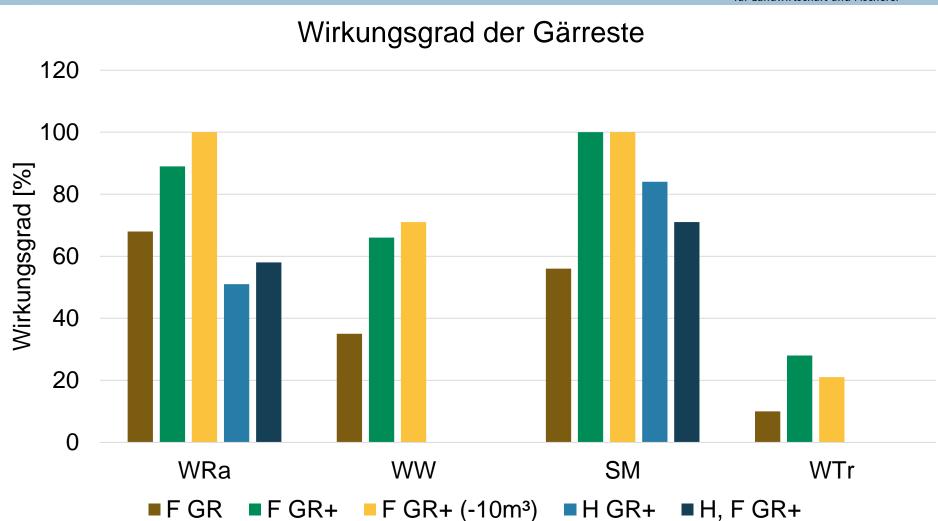

Landesforschungsanstalt für Landwirtschaft und Fischerei

TM-Erträge und N-Salden diverser Düngungsvarianten; Gülzow 2016 – 2018; F: Frühjahr; "+": emissionsmindernd ausgebracht


Jahresmittel der N-Salden in der Fruchtfolge

N-Salden diverser Düngungsvarianten; Gülzow 2016 – 2019 (Anteilig je Kulturart); F: Frühjahr; H: Herbst; "+": emissionsmindernd ausgebracht

Nitratkonzentration im Mittel der Fruchtfolge



Mittlere Nitratkonzentration im Sickerwasser, Gülzow, Messperiode: 13.11.2017 – 19.02.2018 F: Frühjahr; H: Herbst; "+": emissionsmindernd ausgebracht

Düngewirkung und Einsatz

Landesforschungsanstalt für Landwirtschaft und Fischerei

Empfehlung:

Wenn möglich, emissionsmindernde Ausbringungsmethoden nutzen

Winterraps:

 20m³ GR im Frühjahr haben hinsichtlich Salden und Ertrag auch in schlechten Jahren gute Ergebnisse erzielt

Winterweizen:

 25m³ GR im Frühjahr machen, bei hoher Düngewirkung einen Anstieg des RP-Gehalts von 1%-Punkt möglich

Silomais:

• 40m³ haben die höchsten TM-Erträge und ein ausgeglichenes N-Saldo gezeigt

WTr (GPS):

 Der Verzicht auf die GR-Düngung scheint auf Grund der schlechten Verwertung angebracht

Düngewirkung und Einsatz

Landesforschungsanstalt für Landwirtschaft und Fischerei

Kultur	GR Menge [m³/ha]	N-Saldo GR+ [kg /ha]	N-Saldo Min. [kg /ha]
Winterraps	20	90	90
Winterweizen	25	100	60
Silomais	40	1	-20 (0)
Wintertriticale	0	15	15
Jahresmittel	20	50	40

Fazit:

Kann die Düngewirkung von GR noch gesteigert werden?

- ja, eine weitere Erhöhung der Düngewirkung ist durch emissionsmindernde Maßnahmen möglich
- Mehrerträge dürfen hierdurch in der Regel nicht erwartet werden jedoch geringere Salden und ein geringeres Verlustrisiko